XRD CUBIC - Simulation of Unit cell dimension, (h, k, l) - Miller indices d-spacing from X-ray diffraction (XRD) angle, 2-theta (For Cubic crystals)
Designed a basic computer program “XRD CUBIC” (coded in Python) to simulate possible unit crystal cell length (a), Miller indices - {h, k, l} and interplanar spacing (d) for cubic crystals from observed (experimental) X-ray diffraction (XRD) angle that is 2-theta.
It can simulate all these possible crystal lattice parameters for cubic crystal systems such as Simple Cubic or Face Centered Cubic or Body Centered Cubic systems, between the given 2–theta values within the range of specified cell length (a) limits.
1. Enter wavelength of X-ray (in Angstroms)
2. Enter minimum and maximum diffraction angle as 2-theta (in Degrees)
3. Enter minimum and maximum unit cell length (in Angstroms)
All the possible cubic crystal parameters as well as diffraction angle with reference to d-spacing between the given Miller indices (h k l planes) will be simulated.
Video Tutorial
Designed by:
Dr. M Kanagasabapathy, Asst.
Professor
Department of Chemistry, Rajus’ College,
Madurai
Kamaraj University
Rajapalayam, (TN) INDIA 626117
Please let me know for broken links.
Also check:
Crystalsim – Simulation of XRD data, {hkl} planes for all 7 Crystal systems
Outline of the Python code for this program
import math
twotheta=float(input("Enter 2-theta (Degrees): "))
sintheta = math.sin(math.radians(twotheta*0.5))
d = 1.5406/(2*sintheta)
amin=float(input ("Enter minimum cell length (Angstroms) : "))
amax=float(input ("Enter maximum cell length (Angstroms) : "))
print("")
hmin=0
kmin=0
lmin=0
hmax=9
kmax=9
lmax=9
if amin<=amax:
amin=amin + 0.00001
for h in range(hmin, hmax):
h = h+1
for k in range(kmin, kmax):
k = k+1
for l in range(lmin, lmax):
l = l+1
if round((amin**2)/(d**2),2) == round(((h**2)+(k**2)+(l**2)),2):
print("{h, k, l} : ",h,k,l)
print("d-spacing = ", round (d,5))
print("Unit cell length (a) = ", round(amin,5))
print(" ")